Skip to Main Content

Professors

December 13, 2019

Alan Grinnell

Alan Grinnell

Distinguished Professor

Email: adg@ucla.edu
Office: 1220 JLNRC
Phone: (310) 825-4468

Biography

PhD Harvard, 1962; Junior Fellow, Harvard, 1959-62; postdoc UCLondon, 1962-64; UCLA faculty, 1964-present, Departments of Physiology (SOM) and Integrative Biology and Physiology IBP (College); Director, Jerry Lewis Neuromuscular Research Center, 1978-2001; Director, Ahmanson Laboratory of Neurobiology, 1979-2004; Chair, IBP Department 1997-2001; Associate Dean of Life Sciences for Personnel, 2010-

Research Interests

Adaptations of the auditory nervous system of echolocating bats that enable them to orient and hunt using echoes of emitted sounds as a substitute for vision. Also, bat echolocation behavior and feeding strategies. Trophic influences between nerve and muscle governing number, size and strength of nerve terminals. Regulation of neurotransmitter release and properties of presynaptic active zones.
Specific Recent Projects: a. Using Xenopus nerve-muscle cell cultures, patch electrode recordings can be made simultaneously from presynaptic varicosities and postsynaptic muscle cells. Large conductance Ca2+-dependent K+ (BK) channels that co-localize with Ca2+ channels at presynaptic active zones (AZs) can be used to report [Ca2+] at AZs and correlate this direct measurement with neurotransmitter release. This allows correlation of ionic currents with transmitter release and modulation of release, and analysis of molecular mechanisms of release. b. Using mature frog neuromuscular preparations, we are studying the mechanisms of regulation of transmitter release efficacy by muscle stretch, mediated by integrins. c. Using an old world flying fox bat that has excellent night vision but also has evolved good echolocation, we are attempting to determine whether they can shift seamlessly from one modality to the other. I also have a long-standing interest in the art and iconography of preColumbian ceramics from Central Panama.

Education

B.A., Biology, Harvard University 1958
Ph.D., Biology, Harvard University 1962

Selected Publications

Grinnell AD. (2018) Early milestones in the study of echolocation in bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018 Jun;204(6):519-536. doi: 10.1007/s00359-018-1263-3. Epub 2018 Apr 23. Review.

Sun XP, Chen BM, Sand O, Kidokoro Y, Grinnell AD. (2010) Depolarization-induced Ca2+ entry evokes release of large quanta in the developing Xenopus neuromuscular junction.J Neurophysiol. 2010 Nov;104(5):2730-40. doi: 10.1152/jn.01041.2009. Epub 2010 Sep 15. PMID: 20844112

Sun XP, Yazejian B, Grinnell AD. (2004) Electrophysiological properties of BK channels in Xenopus motor nerve terminals. J Physiol. 2004 May 15;557(Pt 1):207-28. Epub 2004 Mar 26. PMID: 15047773

Yazejian B, Sun XP, Grinnell AD. (2000) Tracking presynaptic Ca2+ dynamics during neurotransmitter release with Ca2+-activated K+ channels. Nat Neurosci. 2000 Jun;3(6):566-71. PMID: 10816312

Chen BM, Grinnell AD. (1997) Kinetics, Ca2+ dependence and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals. J Neurosci. 1997 Feb 1;17(3):904-16.PMID: 8994045

 

December 13, 2019

Peter Narins

Peter Narins

Distinguished Professor

Email: pnarins@ucla.edu
Office: 4835 LS
Phone: (310) 825-0265

Research Interests

My research focuses on the question of how animals extract relevant sounds from the often highly noisy backgrounds in which they live. The techniques I use are the quantitative analysis of vocal behavior of animals in their natural habitats, followed by single fiber neurophysiological recordings in order to elucidate mechanisms underlying signal processing in noise. A second research direction is based on the discovery of the remarkable sensitivity to substrate vibrations possessed by burrowing animals. We are now characterizing and providing accurate measurements of vibrational thresholds as well as exploring the differences between substrate-vibration and airborne sound at the cellular level. Other projects carried out by our group have included an investigation of the neurophysiological basis of sound localization in noisy environments, a study of the temperature-dependence of the representation of time in the vertebrate auditory system, the biophysics of sound localization and the evolution of the middle ear reflex in vertebrates. Current projects include using laser Doppler vibrometry to elucidate the sound pathways relevant for stimulation of both the middle and inner ear in small vertebrates, and using whole-cell voltage clamp techniques to carry out an anatomical and physiological study of the mechanisms underlying transduction in vertebrate sensory hair cells. In addition, we supplement the lab work with direct behavioral observations and controlled acoustic playback studies carried out with animals in their natural habitats. These have included both Old and New World lowland wet tropical forests, African deserts and temperate forests in South America.

Education

B.S., Electrical Engineering, Cornell University 1965
M.S., Electrical Engineering, Cornell University 1966
Ph.D., Neurobiology and Behavior, Cornell University 1976

Selected Publications

Narins, P.M. and Meenderink, S.W.F., “Climate change and frog calls: Long-term correlations along a tropical altitudinal gradient”, Proc. Roy. Soc. Lond, 281 : 1-6 (2014) .

Narins, P.M., Wilson, M. and Mann, D., “Ultrasound detection in fishes and frogs: Discovery and mechanisms”, In: Insights from Comparative Hearing Research, C. Koeppl, G.A. Manley, A.N. Popper, R.R. Fay(Eds.), 133-156 (2014) .

Adler, K., Narins, P.M. and Ryan, M.J., “Obituary. Robert R. Capranica (1931-2012) and the Science of Anuran Communication”, Herpetological Review, 44 : 554-556 (2013) .

Miller, M.E., Nasiri, A.K., Farhangi, P.O., Farahbakhsh, N.A., Lopez, I.A., Narins, P.M. and Simmons, D.D., “Evidence for water-permeable channels in auditory hair cells in the leopard frog”, Hear. Res, 292 : 64-70 (2012) .

Manley, G.A., Narins, P.M. and Fay, R.R,, “Experiments in comparative hearing: Georg von Bekesy and beyond”, Hear. Res, 293 : 44-50 (2012) .

Cui, J., Tang, Y. and Narins, P.M., “Real estate ads in Emei music frog vocalizations: Female preference for calls emanating from burrows”, Biol. Letters, 8 : 337-340 (2012) .

Chen. H.-H. A. and Narins, P.M., “Wind turbines and ghost stories: The effects of infrasound on the human auditory system”, Acoustics Today, 8 : 51-56 (2012) .

Quinones, P.M., Luu, C., Schweizer, F.E. and Narins, P.M., “Exocytosis in the frog amphibian papilla”, J. Asso. Res. Otolaryngol, 13 : 39-54 (2012) .

Arch, V.S., Simmons, D.D., Quinones, P.M., Feng, A.S., Jiang, J., Stuart, B., Shen, J.-X., Blair, C. and Narins, P.M., “Inner ear morphological correlates of ultrasonic hearing in frogs”, Hear. Res, 283 : 70-79 (2012) .

Shen, J.-X., Xu. Z.-M., Feng, A. and Narins, P.M., “Large odorous frogs (Odorrana graminea) produce ultrasonic calls”, J. Comp. Physiol, 197 : 1027-1030 (2011) .

 

December 13, 2019

Claudio Villanueva

Claudio Villanueva

Associate Professor

Email: cvillanueva@g.ucla.edu
Office: 27-200K CHS
Phone: (310) 825-4369
Website: https://sites.lifesci.ucla.edu/ibp-villanuevalab/

Biography

Professor Villanueva completed his undergraduate training at Cal State San Bernardino where he studied hormonal regulation of sodium uptake across the abdominal epithelium. He was fascinated by the way multicellular organisms’ sense and adapt to the surrounding environment. This early training sparked his interest in Integrative Physiology. As a Ph.D. student at UCSF, he trained at the Gladstone Institute of Cardiovascular Disease, where he studied lipid metabolism. He investigated the role of DGAT enzymes in fatty liver disease. His postdoc training was completed at UCLA, where he studied transcriptional mechanisms that regulate cellular programming of metabolism. He was recruited to the Department of Biochemistry at the University of Utah School of Medicine, and in 2019 joined the Department of Integrative Biology and Physiology at UCLA. His research aims to understand the metabolic adaptations required for cold adaptation in mammals.

Research Interests

Dr. Villanueva is interested in understanding how cells sense and control metabolism in response to stressors like temperature. The ability to maintain a constant body temperature despite a changing environment can lead to dramatic changes in energy expenditure. This requires an understanding of integrative metabolism and physiology. His lab will explore the molecular mechanisms that promote energy expenditure. He wants to understand how adipocytes regulate energy balance and how they communicate with the liver. These studies will provide opportunities for intervening in metabolic diseases that are associated with obesity.

Education

B.A., Biology, California State University, San Bernardino 2001
Ph.D., Lipid Biochemistry, University of California, San Francisco 2007

Selected Publications

Bensard CL, Wisidagama DR, Olson KA, Berg JA, Krah NM, Schell JC, Nowinski SM, Fogarty S, Bott AJ, Wei P, Dove KK, Tanner JM, Panic V, Cluntun A, Lettlova S, Earl CS, Namnath DF, Vázquez-Arreguín K, Villanueva CJ, Tantin D, Murtaugh LC, Evason KJ, Ducker GS, Thummel CS, Rutter J. “Regulation of Tumor Initiation by the Mitochondrial Pyruvate Carrier.”
Cell Metab. 31(2):284-300 (2020).

Anthony RP Verkerke, Patrick J Ferrara, Chien-Te Lin, Jordan M Johnson, Terence E Ryan, J Alan Maschek, Hiroaki Eshima, Christopher W Paran, Brenton T Laing, Piyarat Siripoksup, Trevor S Tippetts, Edward J Wentzler, Hu Huang, Espen E Spangenburg, Jeffrey J Brault, Claudio J Villanueva, Scott A Summers, William L Holland, James E Cox, Dennis E Vance, P Darrell Neufer, Katsuhiko Funai., “Phospholipid methylation regulates muscle metabolic rate through Ca 2+ transport. efficiency”, Nature Metabolism, 1 : 876-885 (2019) .

Charisse Petersen, Rickesha Bell, Kendra A Klag, Soh-Hyun Lee, Raymond Soto, Arevik Ghazaryan, Kaitlin Buhrke, H Atakan Ekiz, Kyla S Ost, Sihem Boudina, Ryan M O’Connell, James E Cox, Claudio J Villanueva, W Zac Stephens, June L Round., “T cell-mediated regulation of the microbiota protects against obesity”, Science, 365 (6451): (2019) .

Gisela Geoghegan, Judith Simcox, Marcus M Seldin, Timothy J Parnell, Chris Stubben, Steven Just, Lori Begaye, Aldons J Lusis, Claudio J Villanueva., “Targeted deletion of Tcf7l2 in adipocytes promotes adipocyte hypertrophy and impaired glucose metabolism”, Molecular Metabolism, 24 : 44-63 (2019).

Stephanie Pearson, Anne Loft, Prashant Rahbhandari, Judith Simcox, Sanghoon Lee, Peter Tontonoz, Susanne Mandrup, Claudio J Villanueva., “Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism”, Genes & Development, (2019).

Marah C Runtsch, Morgan C Nelson, Soh-Hyun Lee, Warren Voth, Margaret Alexander, Ruozhen Hu, Jared Wallace, Charisse Petersen, Vanja Panic, Claudio J Villanueva, Kimberley J Evason, Kaylyn M Bauer, Timothy Mosbruger, Sihem Boudina, Mary Bronner, June L Round, Micah J Drummond, Ryan M O’Connell., “Anti-inflammatory microRNA-146a protects mice from diet-induced metabolic disease”, PLOS Genetics, 15 (2): (2019).

Gilles Storelli, Hyuck-Jin Nam, Judith Simcox, Claudio J Villanueva, Carl S Thummel., “Drosophila HNF4 directs a switch in lipid metabolism that supports the transition to adulthood”, Developmental Cell, 48 (2): 200-214 (2019).

Simon T Bond, Sarah C Moody, Yingying Liu, Mete Civelek, Claudio J Villanueva, Paul Gregorevic, Bronwyn A Kingwell, Andrea L Hevener, Aldons J Lusis, Darren C Henstridge, Anna C Calkin, Brian G Drew., “The E3 ligase MARCH5 is a PPARγ target gene that regulates mitochondria and metabolism in adipocytes”, American Journal of Physiology-Endocrinology and Metabolism, 316 (2): E293-E304 (2018).

Santhosh Karanth, JD Adams, Maria de los Angeles Serrano, Ezekiel B Quittner-Strom, Judith Simcox, Claudio J Villanueva, Lale Ozcan, William L Holland, H Joseph Yost, Adrian Vella, Amnon Schlegel., “A Hepatocyte FOXN3-α Cell Glucagon Axis Regulates Fasting Glucose”, Cell Reports, 24 (2): 312-319 (2018).

Judith Simcox, Gisela Geoghegan, John Alan Maschek, Claire L Bensard, Marzia Pasquali, Ren Miao, Sanghoon Lee, Lei Jiang, Ian Huck, Erin E Kershaw, Anthony J Donato, Udayan Apte, Nicola Longo, Jared Rutter, Renate Schreiber, Rudolf Zechner, James Cox, Claudio J Villanueva, “Global Analysis of Plasma Lipids Identifies Liver-Derived Acylcarnitines as a Fuel Source for Brown Fat Thermogenesis”, Cell Metabolism, 26 (3): 509-522 (2017) .

 

December 13, 2019

Scott Chandler

Scott Chandler

Professor

Email: schandler@physci.ucla.edu
Office: 2024 TLSB
Phone: (310) 206-6636

Biography

I am married to my lovely wife Sonja for 35 years and have two wonderful daughters, Jennifer and Danielle. We love to travel, hike and photograph our journeys. I have a passion for photography and specialize in both landscape and sports genres. I regularly photograph sports events for the UCLA athletic department and have a number of prints on the Walls of UCLA buildings, such as Powell library and the Geology building.

Research Interests

My global interest is in how the central nervous system controls movement. Precisely how we produce coordinated, rhythmical movements such as locomotion, mastication, and respiration is a fundamental problem in neuroscience that is poorly understood. During injury or disease these basic types of movements, which we take for granted, can be compromised. My lab uses animal models to study how rhythmical jaw movements are produced. We use a combination of electrophysiological, molecular, pharmacological techniques in conjunction with computational modeling and bioinformatics to address basic questions about how single and small networks of neurons in the brainstem orchestrate coordinated activity in synapses and ion channels to produce unique discharge patterns that occur during rhythmical movements. We have found that localized groups of neurons within small areas of the brainstem are important for the basic rhythmic component of mastication and that specific ion channels are activated to produce the appropriate discharge patterns reminiscent of masticatory patterns. More recently, the lab has obtained transgenic mice that produce the majority of symptoms of the devastating disease, Amyotrophic Lateral Sclerosis (ALS), otherwise known as Lou Gehrig’s disease. We found that certain ion channels in both sensory and motor neurons are abnormally active prior to the onset of symptoms of the disease. Although these studies are in the early stages, they could provide insight into how the motoneuronal neurodegeneration that is responsible for paralysis and death occur, and will start to identify new molecular targets for development of rational drug therapies to delay motoneuronal degeneration and prolong the life of ALS patients.

Education

B.S., Neurobiology, University of California, Berkeley
Ph.D., Physiology/Neurophysiology, University of California, Los Angeles 1979

Selected Publications

Liu W, Venugopal S, Majid S, Ahn IS, Diamante G, Hong J, Yang X, Chandler SH (2020) ‘Single-cell RNA-seq analysis of the brainstem of mutant SOD1 mice reveals perturbed cell types and pathways of amyotrophic lateral sclerosis.’ Neurobiol Dis, In Press. PMID: 32360664

Seki S, Tanaka S, Yamada S, Tsuji T, Enomoto A, Ono Y, Chandler SH, Kogo M (2020) ‘Neuropeptide Y modulates membrane excitability in neonatal rat mesencephalic V neurons.’ J Neurosci Res, 98 (5): 921-935. PMID: 31957053

Venugopal S, Seki S, Terman DH, Pantazis A, Olcese R, Wiedau-Pazos M, Chandler SH (2019) ‘Resurgent Na+ Current Offers Noise Modulation in Bursting Neurons.’ PLoS Comput Biol, 15 (6): e1007154. PMID: 31226124

Salomon D., Martin-Harris., Mullen B., Odegaard B., ZvinyatskovskiyA., and Chandler S.H, “Brain Literate: Making Neuroscience Accessible to a Wider Audience of Undergraduates”, J. Undergraduate Neurosci. Educ, 13 : 1-9 (2015) .

Masoumi A., Low E., Shoghi T., Chan P., Hsiao CF., Chandler S.H., & Martina Wiedau-Pazos., “Enrichment of human embryonic stem cell derived motor neuron cultures using arabinofuranosyl cytidine”, Future Neurol, 10 : 91-99 (2015) .

Venugopal S., Hsiao CF., Sonoda T., Weidau-Pazos M.,and Chandler S.H., “Homeostatic dysregulation in membrane properties of masticatory motoneurons compared to oculomotor neurons in a mouse model for Amyotrophic Lateral Sclerosis”, J. Neurosci, 35 : 707-720-720 (2015) .

Tsuruyama K, Hsiao CF, Chandler SH, “Participation of a persistent sodium current and calcium-activated nonspecific cationic current to burst generation in trigeminal principal sensory neurons”, J. Neurophysiology, 110 : 1903-1914 (2013) .

Hsiao CF, Kaur G, Vong A, Bawa H, Chandler SH, ” Participation of Kv1 channels in control of membrane excitability and burst generation in mesencephalic V neurons”, J. Neurophysiology, 101 : 1407-1418 (2009) .

Hsiao, C.F., Gougar, K., Asai, J. and Chandler, S.H, ” Intrinsic membrane properties and morphological characteristics of interneurons in the rat supratrigeminal region”, J.Neurosci. Res, 85 : 3673-3686 (2007) .

Enomoto, A., Han, J.M., Hsiao, C.F., Wu, N. and Chandler, S.H., “Participation of sodium currents in burst generation and control of membrane excitability in mesencephalic trigeminal neurons”, J Neurosci, 26 : 3412-3422 (2006) .

 

December 13, 2019

Rachelle Crosbie

Rachelle Crosbie

Professor
Department Chair

Email: rcrosbie@physci.ucla.edu
Office: 2121 TLSB
Phone: (310) 794-2103
Website: https://crosbie.ibp.ucla.edu/

Biography

Rachelle was raised in the Big Thicket of southeast Texas and spent her childhood in search of crawdads, water moccasins, and cottonmouths near the bayou. At the age of nine, she moved with her family to Saudi Arabia, where she learned to scuba dive, ride a camel, and survive in the Arabian desert. All of these adventures prepared her for a life in academia. During college, a summer internship at M.D. Anderson Cancer Center in Houston sparked her interest in pursuing a career in research. She completed her Ph.D. graduate thesis with Professor Emil Reisler in the Department of Biochemistry at UCLA. During this time, she developed a love of protein biochemistry and an appreciation of the intricate relationship between the structure and function of contractile proteins that drive movement in skeletal muscle. As a graduate student, she was also passionate about education and received departmental awards for research and teaching. She then pursued postdoctoral research training in the laboratory of Professor and HHMI Investigator Kevin P. Campbell at the University of Iowa Carver College of Medicine, during which time she was supported by the Robert Sampson Postdoctoral Fellowship from the Muscular Dystrophy Association. Her research was focused on Duchenne muscular dystrophy, which is the most common of the rare diseases that affect children. During her postdoctoral research, she discovered a muscle protein that is associated with dystrophin and assigned it the name sarcospan based on its multiple sarcolemma-spanning domains. Her lab is now focused on basic and translational research of muscular dystrophies. She maintains her passion for education and teaching. She is a National Academies Education Scholar and was awarded the UCLA campus-wide Chancellor’s Distinguished Teaching Award, the Coalition Duchenne Lotus Award, the Golden Test Tube Award, and the Life Sciences Award for Teaching Innovation. She developed a fully online course on Duchenne muscular dystrophy that is offered at all University of California campuses and beyond. She leads a NIH T32 training grant program that supports graduate students and postdoctoral fellows in muscle laboratories at UCLA. The results from her first education focused research study were recently published (Choe et al., 2019 CBE Life Sci Edu). The article describes a new coding method to determine the student engagement value of asynchronous online lecture videos. A second manuscript that is in preparation is focused on how students experience online courses. When out of the lab, Professor Crosbie enjoys driving her 1968 corvette on the Pacific Coast Highway.

Research Interests

Loss of appropriate connection between the muscle cell membrane and its surrounding extracellular matrix is a critical initiating event in Duchenne muscular dystrophy (DMD), which is an inherited muscle wasting disorder that affects all skeletal and cardiac muscles. In fact, there are more children with this inherited muscle-wasting disorder than with all combined childhood cancers; yet there is no treatment. Whereas survival rates for childhood cancers have increased from 58% in 1975-1977 to 80% in 1996-2003, survival rates for DMD have remained the same, 0%. Thirty percent of the mutations in the dystrophin gene are spontaneous, which means that DMD will always be present in the population. Professor Crosbie’s research group has developed the use of the myofiber’s own compensatory mechanisms as a strategy to ameliorate dystrophic muscle. Such approaches are advantages in that they have the potential to target all DMD cases, regardless of the specific dystrophin mutation. Her lab has discovered that sarcospan, a transmembrane protein, evokes a set of molecular events that, when individually activated in DMD muscle, ameliorate dystrophin-deficient disease including cardiac, respiratory, and skeletal muscle dysfunction. The Crosbie lab has identified new chemical entities (small compounds) that activate sarcospan in DMD muscle cells, which the lab is pursuing as a treatment for DMD. Professor Crosbie’s group has also developed an in vitro platform to investigate the interaction of muscle resident cells with the extracellular matrix as a mechanism to investigate the effect of fibrosis on muscle function in health and disease. Professor Crosbie’s research has been continuously funded by NIH R01 grants, in addition to grants from industry and non-profit organizations.

Education

B.S., Biochemistry, Texas A&M University 1989
Ph.D., Biochemistry, University of California, Los Angeles 1994
Postdoctoral Fellowship, University of Iowa Carver College of Medicine

Selected Publications

Shu C, Kaxon-Rupp AN, Collado JR, Damoiseaux R, Crosbie RH (2019) ‘Development of a high-throughput screen to identify small molecule enhancers of sarcospan for the treatment of Duchenne muscular dystrophy.’ Skelet Muscle, 9 (1): 32. PMID: 31831063.

Choe RC, Scuric Z, Eshkol E, Cruser S, Arndt A, Cox R, Toma SP, Shapiro C, Levis-Fitzgerald M, Barnes G, Crosbie RH (2019) ‘Student Satisfaction and Learning Outcomes in Asynchronous Online Lecture Videos.’ CBE Life Sci Educ, 18 (4): ar55. PMID: 31675279.

Gibbs EM, Barthélémy F, Douine ED, Hardiman NC, Shieh PB, Khanlou N, Crosbie RH, Nelson SF, Miceli MC (2019) ‘Large in-frame 5′ deletions in DMD associated with mild Duchenne muscular dystrophy: Two case reports and a review of the literature.’ Neuromuscul Disord, 29 (11): 863-873. PMID: 31672265.

Parvatiyar MS, Brownstein AJ, Kanashiro-Takeuchi RM, Collado JR, Dieseldorff Jones KM, Gopal J, Hammond KG, Marshall JL, Ferrel A, Beedle AM, Chamberlain JS, Renato Pinto J, Crosbie RH (2019) ‘Stabilization of the cardiac sarcolemma by sarcospan rescues DMD-associated cardiomyopathy.’ JCI Insight, 4 (11): 1-21. PMID: 31039133.

 

December 13, 2019

Eric Deeds

Eric Deeds

Professor
Vice Chair, Life Sciences Core

Email: deeds@ucla.edu
Office: 570E Boyer Hall
Phone: (310) 825-1034

Education

B.S., Biochemistry, Case Western Reserve University 2001
B.A., English, Case Western Reserve University 2001
A.M., Biology, Harvard University 2003
Ph.D., Biology, Harvard University 2005

Selected Publications

Vakser, I. A. and Deeds, E. J., “Computational Approaches to Macromolecular Interactions in the Cell”, Curr Opin Struct Biol, 55 : 59-65 (2019) .

Shockley, E. M., Rouzer, C. A., Marnett, L. J., Deeds, E. J. and Lopez, C. F., “Signal integration and information transfer in an allosterically regulated network”, npc Syst Biol Appl, 5 (1): 324-333 (2019) .

Suderman, R. and Deeds, E. J., “Intrinsic limits on information transfer in cellular signaling networks”, Interface Focus, 8 (6): 20180039- (2018) .

Nariya MK, Kim JH, Xiong J, Kleindl PA, Hewarathna A, Fisher AC, Joshi SB, Schneich C, Forrest ML, Middaugh CR, Volkin DB, Deeds EJ, “Comparative Characterization of Crofelemer Samples Using Data Mining and Machine Learning Approaches With Analytical Stability Data Sets”, Journal of pharmaceutical sciences, 106 (11): 3270-3279 (2017) .

Rowland MA, Greenbaum JM, Deeds EJ, “Crosstalk and the evolvability of intracellular communication”, Nature communications, 8 : 16009- (2017) .

Suderman R, Bachman JA, Smith A, Sorger PK, Deeds EJ, “Fundamental trade-offs between information flow in single cells and cellular populations”, Proceedings of the National Academy of Sciences of the United States of America, 114 (22): 5755-5760 (2017) .

Kleindl PA, Xiong J, Hewarathna A, Mozziconacci O, Nariya MK, Fisher AC, Deeds EJ, Joshi SB, Middaugh CR, Schneich C, Volkin DB, Forrest ML, “The Botanical Drug Substance Crofelemer as a Model System for Comparative Characterization of Complex Mixture Drugs”, Journal of pharmaceutical sciences, 106 (11): 3242-3256 (2017) .

Hewarathna A, Mozziconacci O, Nariya MK, Kleindl PA, Xiong J, Fisher AC, Joshi SB, Middaugh CR, Forrest ML, Volkin DB, Deeds EJ, Schneich C, “Chemical Stability of the Botanical Drug Substance Crofelemer: A Model System for Comparative Characterization of Complex Mixture Drugs”, Journal of pharmaceutical sciences, 106 (11): 3257-3269 (2017) .

Nariya MK, Israeli J, Shi JJ, Deeds EJ, “Mathematical Model for Length Control by the Timing of Substrate Switching in the Type III Secretion System”, PLoS computational biology, 12 (4): e1004851- (2016) .

Wani PS, Rowland MA, Ondracek A, Deeds EJ, Roelofs J, “Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association”, Nature communications, 6 (6384): (2015) .

 

December 13, 2019

Gordon Fain

Gordon Fain

Distinguished Professor

Email: gfain@ucla.edu
Office: A222B, the Jules Stein Eye Institute
Phone: (310) 206-4281

Biography

Gordon Fain got his BA at Stanford in Biology and PhD at Johns Hopkins in Biophysics. After postdocs at Harvard and the École Normale Supérieure in Paris, he came to UCLA in 1975 and remained for his entire career. A Gugenheim fellow, NIH MERIT scholar, and Fellow of AAAS, he retired from active service in 2017 but is still funded by the NIH and continues his research. When he retired, he moved with all his equipment and people into the laboratory of his former graduate student Alapakkam Sampath, who is Professor and Associate Director of the Jules Stein Eye Institute at UCLA. They share students and research personnel and offer a joint program in the physiology and biophysics of the retina.

Research Interests

A vertebrate photoreceptor uses a G-protein receptor (rhodopsin) and a G-protein cascade to produce the electrical response that signals a change in light intensity. Powerful new techniques have made it possible to understand the working of this cascade in extraordinary detail. The reason for this is that practically every protein involved in the cascade in a photoreceptor, from the pigment molecule rhodopsin to the G-protein and channels, but including also a large number of control proteins, are expressed only in the photoreceptors and nowhere else in the body. This makes it possible with genetic techniques to create mice in which these proteins have been knocked out, over or under expressed, or replaced with proteins of modified structure. We use electrical recording to study the effects of such genetic alterations on the light responses of mouse rods and cones, in order to understand the role of these proteins in the visual cascade. We are especially interested in modulatory enzymes and their function in light and dark adaptation. We also have a long-standing interest in mechanisms of photoreceptor degeneration in genetically inherited disease.

Education

B.S., Biology, Stanford University 1968
Ph.D., Biophysics, Johns Hopkins University 1973

Selected Publications

Reingruber, J., N.T. Ingram, Griffis, K.G., and G.L. Fain. 2020. A kinetic analysis of mouse rod and cone photoreceptor responses. Journal of Physiology, in press.

Ellis, E.M., R. Frederiksen, A. Morshedian, G. L. Fain, and A.P. Sampath. Separate ON and OFF pathways in vertebrate vision first arose during the Cambrian. Current Biology, in press.

Ingram, N.T., A.P. Sampath, and G.L. Fain. 2020. Membrane conductances of mouse cone photoreceptors. Journal of General Physiology. Mar 2;152(3). PMID: 31986199. pii: e201912520. doi: 10.1085/jgp.201912520.

Fain, G.L. 2019. Sensory Transduction (second edition). Oxford University Press, Oxford.

Morshedian, A., J.J. Kaylor, S.Y. Ng, A. Tsan, R. Frederiksen, T. Xu, L. Yuan, A.P. Sampath, R.A. Radu, G.L. Fain, and G.H. Travis. 2019. Light-Driven Regeneration of Cone Visual Pigments through a Mechanism Involving RGR Opsin in Muller Glial Cells. Neuron. 102:1172-1183 e1175. PMID: 31056353. doi: 10.1016/j.neuron.2019.04.004.

Ingram, N.T., A.P. Sampath, and G.L. Fain. 2019. Voltage-clamp recordings of light responses from wild-type and mutant mouse cone photoreceptors. Journal of General Physiology. 151:1287-1299. PMID: 31562185. doi: 10.1085/jgp.201912419.

Wang, T., J. Reingruber, M.L. Woodruff, A. Majumder, A. Camarena, N.O. Artemyev, G.L. Fain, and J. Chen. 2018. The PDE6 mutation in the rd10 retinal degeneration mouse model causes protein mislocalization and instability and promotes cell death through increased ion influx. J Biol Chem. 293:15332-15346. PMID: 30126843. doi: 10.1074/jbc.RA118.004459

Fain G, Sampath AP, “Rod and cone interactions in the retina”, F1000Research, 7 : (2018) .

Morshedian A, Woodruff ML, Fain GL, “Role of recoverin in rod photoreceptor light adaptation”, The Journal of physiology, 596 (8): 1513-1526 (2018) .

Morshedian A, Fain GL, “Light adaptation and the evolution of vertebrate photoreceptors”, The Journal of physiology, 595 (14): 4947-4960 (2017) .

Kaylor JJ, Xu T, Ingram NT, Tsan A, Hakobyan H, Fain GL, Travis GH, “Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate”, Nature communications, 8 (1): 16- (2017) .

Morshedian A, Fain GL, “The evolution of rod photoreceptors”, Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 372 (1717): (2017) .

Ingram NT, Sampath AP, Fain GL, “Why are rods more sensitive than cones?”, The Journal of physiology, 594 (19): 5415-26 (2016) .

Reingruber J, Holcman D, Fain GL, “How rods respond to single photons: Key adaptations of a G-protein cascade that enable vision at the physical limit of perception”, BioEssays : news and reviews in molecular, cellular and developmental biology, 37 (11): 1243-52 (2015) .

 

December 13, 2019

Mark Frye

Mark Frye

Professor
Director of Molecular, Cellular and Integrative Physiology (MCIP) Interdepartmental Ph.D. Program

Email: frye@ucla.edu
Office: 2014 TLSB
Phone: (310) 825-5360
Website: https://sites.lifesci.ucla.edu/ibp-frye/

Biography

Professor Frye grew up in upstate New York, and after completing a BA in psychology at SUNY Oneonta, he expanded his studies of neuroscience at Union College, where he received his MS for research on the cellular neurophysiology of dragonfly vision with Robert Olberg. He moved to University of Washington to complete a PhD on the sensory biomechanics of flight control in the hawkmoth under the mentorship of Tom Daniel and Jim Truman. His postdoctoral training was with Michael Dickinson at UC Berkeley and Caltech studying multimodal sensory control of flight behavior in Drosophila. In his own lab he uses virtual reality behavior, neurogenetics, and live brain imaging to understand how sensory signals are encoded, fused across modalities, and transformed into the motor control of complex behavior.

Research Interests

General introduction How are flexible and robust animal behaviors orchestrated by the nervous system? Different forms of this general question have occupied neuroscientists for decades. Great strides have been made toward describing the elements of nervous system development, structure, and function. Our next challenge is to examine how behavior emerges from the interactions among genetic, cellular, cell-system, and organ-system levels of organization. My laboratory studies these interactions in a powerful model system ? the fruit fly Drosophila melanogaster. Whereas research with Drosophila is most often focused within the molecular-genetic spectrum of modern biology, this animal also shows remarkable behavioral performance, making its living navigating vast distances through complex visual landscapes in search of the source of an attractive odor. A fly?s sophisticated navigation capabilities emerge from the fusion of multiple sensory modalities and transformation of a robust motor code. By combining the rapidly expanding toolkit of fruit fly molecular genetics with live imaging and ‘virtual reality’ behavioral techniques, we hope to reveal the functional mechanisms and structural circuits with which the fly brain coordinates the biomechanics and dynamics of complex sensory behavior. The results of this cross-disciplinary approach could have broad impact on our understanding of the general principles of sensory fusion and sensory-motor integration common among animal taxa, and also motivate specialized technical advances in bio-inspired robotic devices.

Education

M.S., Neuroscience, Union College 1992
Ph.D., Zoology, University of Washington 2000

Selected Publications

Keleş MF, Hardcastle BJ, Städele C, Xiao Q, Frye MA. Inhibitory Interactions

and Columnar Inputs to an Object Motion Detector in Drosophila. Cell Reports, (7):2115-2124 (2020).

Cheng KY, Frye MA. Neuromodulation of insect motion vision. Journal of Comparative Physiology A. 206(2):125-137 (2020).

Mongeau JM, Frye MA, “Flies spatio-temporally integrate visual signals to control saccades”, Current Biology, 27 (9): 2901-2914 (2017) .

Aptekar JW, Keles MF, Lu PM, Zolotova NM, Frye MA, “Neurons forming optic glomeruli compute figure-ground discriminations”, J Neuroscience, 35 : 7587-7599 (2015) .

Frye MA, “Quick guide: Elementary motion detectors”, Curr Biol, 25 : R215-217 (2015) .

Wasserman SW, Aptekar JW, Lu PM, Nguyen J, Wang AL, Keles MF, Grygoruk A, Krantz DE, Larsen C, Frye MA, “Olfactory neuromodulation of motion vision circuitry in Drosophila”, Curr Biol, 25 : 467-472 (2015) .

 

December 13, 2019

David Glanzman

David Glanzman

Distinguished Professor

Email: glanzman@ucla.edu
Office: 2357C Gonda (Goldschmied) Center
Phone: (310) 206-9972

Biography

I began my academic career as an English and film major at Oberlin College. After two years of college, I decided to explore the world, and spent a year-and-a-half living in New York City’s East Village, working as a silkscreen printer and apprentice film editor. My curiosity about the world somewhat satisfied, I decided to return to college; I eventually graduated from Indiana University with a B.A. in psychology. I then obtained a Ph.D. in experimental psychology from Stanford University, and afterwards did postdoctoral stints in the laboratories of Frank Krasne at UCLA and Eric Kandel at the Howard Hughes Medical Institute at Columbia University. It was in Kandel’s laboratory that I began my work on learning and memory in Aplysia (see below). In 1990 I was hired as an Assistant Professor in the Department of Integrative Biology & Physiology (formerly Physiological Science), where I am now a Professor. In addition, I am also a Professor in the Department of Neurobiology in the David Geffen School of Medicine.

Research Interests

My laboratory is interested in the cell biology of learning and memory in simple organisms. In our research we use two animals, the marine snail Aplysia californica, and the zebrafish (Danio rerio).
Work on Aplysia: This invertebrate has a comparatively simple nervous system (~ 20,000 neurons) that provides a valuable experimental model for understanding the cellular mechanisms that underlie simple forms of learning, such as habituation, sensitization, and classical conditioning. Another experimental advantage of Aplysia is that sensory and motor neurons that mediate specific reflexes of the animal can be placed into dissociated cell culture where they will reform their synaptic connections. These in vitro sensorimotor synapses are extremely useful for cellular and molecular studies of short- and long-term learning-related synaptic plasticity. Currently, my laboratory is investigating the mechanisms that underlie the persistence of memory: How are memories maintained in our brains over long periods of time? Recently, we have found evidence that RNA-induced nuclear changes, particularly epigenetic changes, play a critical role in memory storage. Specifically, we have found that a long-term memory can be reinstated after manipulations that erase the behavioral and synaptic memory expressions of the memory; by contrast, the memory cannot be reinstated after its disruption by inhibition of an epigenetic process, DNA methylation. We have also found that long-term memory can be transferred from trained to naive, untrained snails if RNA extracted from the nervous systems of sensitization-trained snails is injected into untrained snails. By contrast, RNA from untrained donor snails does not induce sensitization when injected into untrained recipients. These results challenge the synaptic plasticity model of memory.
Work on the zebrafish: The zebrafish has significant advantages for genetic and molecular studies of behavior, including studies of learning and memory. The zebrafish is amenable to both forwards and reverse genetics. Furthermore, although it is a vertebrate with a complex vertebrate nervous system, it possesses reflexive behaviors that are mediated by relatively simple neural circuits in the spinal cord and brainstem. Finally, zebrafish larvae are transparent, which facilitates the use of optogenetics and advanced imaging techniques to study learning-related neural activity within the intact animal. We study the neural basis of nonassociative learning and memory in zebrafish larvae. In addition, we are investigating olfactory-based associative learning in these organisms.

Education

B.A., Psychology, Indiana University Bloomington 1973
Ph.D., Psychology, Stanford University 1980

Selected Publications

Abraham WC, Jones OD, Glanzman DL (2019) ‘Is plasticity of synapses the mechanism of long-term memory storage?’ NPJ Sci Learn, 4 (): 9. PMID: 31285847

Bedecarrats, A. Chen, S. Pearce, K. Cai, D. Glanzman, D. L., “RNA from trained Aplysia can induce an epigenetic engram for long-term sensitization in untrained Aplysia”, eNeuro, 5 (3): (2018)

Pearce, K. Cai, D. Roberts, A. C. Glanzman, D. L., “Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia”, eLife, 6 : (2017)

Chen, S., Cai, D., Pearce, K., Sun, P.Y., Roberts, A.C., Glanzman, D.L.,, “Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia”, eLife, (2014)

Roberts, A.C., Bill, B.R., and Glanzman, D.L., “Learning and memory in zebrafish larvae”, Front. Neural Circuits, (2013)

Crystal, J.D., and Glanzman, D.L., “A biological perspective on memory”, Current Biology, 23 (17): R728-R731 (2013)

 

Press and Media

Interesting discussion of our recent eLife paper in Discover: http://blogs.discovermagazine.com/neuroskeptic/2014/12/27/synapse-memory-doctrine-threatened/#.VNAEAUKBujA

Another article about our eLife paper in Scientific American: http://www.nature.com/scientificamerican/journal/v312/n4/pdf/scientificamerican0415-14.pdf

Article on my research in The Huffington Post: http://www.huffingtonpost.com/2014/12/23/neuroscience-memory-_n_6366588.html

TEDx talk on long-term memory: https://www.youtube.com/watch?v=mLp6PUPqscs

NSN Short A Memorable Snail NOVA Vodcast published 08-21-2009 13:00:00

Video interview on learning and consciousness (scroll down for David Glanzman video)

Audio interview in The DNA Files show “Minding the Brain”

Interview in the online news source “The Mark” (May 19, 2011): http://www.themarknews.com/articles/5222-eternal-sunshine-is-just-around-the-corner?page=1

Article on my research in the May 10, 2011, issue of “The Atlantic”: http://www.theatlantic.com/life/archive/2011/05/even-if-we-could-erase-bad-memories-should-we/238444/

December 13, 2019

Fernando Gomez-Pinilla

Fernando Gomez-Pinilla

Professor in Residence

Email: fgomezpi@ucla.edu
Office: 1814 LS
Phone: (310) 206-9693
Website: http://www.physci.ucla.edu/research/GomezPinilla/

Research Interests

Role of Trophic Factors on Activity-dependent Plasticity We are interested on the mechanisms by which environmental factors affect neuronal health. We have found that trophic factors endogenous to the brain and spinal cord can be induced by the practice of select behaviors. We have recently reported that physical activity, learning, and nutritional factors control neurotrophins in the brain. These findings opened the exciting possibility that regulation of trophic factors by behavior can be a pivotal mechanism by which specific experiences can impact the structure and function of the CNS. It may account for the improvement of CNS function after trauma provided by rehabilitative therapies. On the contrary, it may explain the decay in function in aging or degenerative diseases following a lack of stimulation. These two avenues provide direction for my research program: 1) How trophic factors induced by activity can help functional recovery following brain and spinal cord trauma. We are using several exercise models to boost the production of trophic factors in the brain and spinal cord. Our goal is to provide critical information to guide the design of behavioral therapies for the reduction of the severity of insult or disease, and to increase CNS function. 2) We are evaluating the effects of lifestyle on trophic factor production, with resulting effects on circuit remodeling, synaptic function, and cognition. We believe that changes in trophic factor as a result of select experiences can affect neuronal health with profound consequences for cognitive function.

Education

B.A., University of Chile 1977
M.S., Neurobiology, University of Chile 1979
Ph.D., Anatomy & Cell Biology, University of California, Los Angeles 1986

Selected Publications

Molteni R, Wu A, Vaynman S, Ying Z, Barnard RJ, Gomez-Pinilla F., “Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor”, Neuroscience, 123(2) : 429-40 (2004) .

Wu A, Ying Z, Gomez-Pinilla F., “The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition”, Eur J Neurosci, 19(7): : 1699-707 (2004) .

Vaynman S, Ying Z, Gomez-Pinilla F., “Exercise induces BDNF and synapsin I to specific hippocampal subfields”, J Neurosci Res, 76(3): : 356-62 (2004) .

Griesbach GS, Hovda DA, Molteni R, Wu A, Gomez-Pinilla F., “Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function”, Neuroscience, 125(1) : 129-39 (2004) .

Hutchinson KJ, Gomez-Pinilla F, Crowe MJ, Ying Z, Basso DM., “Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats”, Brain, 127(Pt 6): : 1403-14 (2004) .

Molteni R, Zheng JQ, Ying Z, Gomez-Pinilla F, Twiss JL., “Voluntary exercise increases axonal regeneration from sensory neurons”, Proc Natl Acad Sci U S A, 101(22) : :8473-8 (2004) .

Ying Z, Roy RR, Edgerton VR, Gomez-Pinilla F., “Voluntary exercise increases neurotrophin-3 and its receptor TrkC in the spinal cord”, Brain Res, 987(1) : 93-9 (2003) .

Vaynman S, Ying Z, Gomez-Pinilla F., “Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity”, Neuroscience, 122(3) : 647-57 (2003) .

Gomez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR., “Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity”, J Neurophysiol, 88(5) : 2187-95 (2002) .

Molteni, Ying, Z., and Gomez-Pinilla, F., “Differential expression of plasticity-related genes in the rat hippocampus after voluntary wheel running”, Eur. J. Neurosci, 16 (6) : 1107-1124 (2002) .